Various pfcr and pfmdr1 genotypes of *Plasmodium falciparum* co-circulate with *P. malariae*, *P. ovale* sp and *P. vivax* in northern Angola

Cláudia Fançony¹, Dina Gamboa², Yuri Sebastião¹, Rachel Hallett³, Colin Sutherland³, José Sousa-Figueiredo⁴ and Susana Nery¹

¹ Projecto CISA (Centro de Investigação em Saúde em Angola), ² Laboratory of Clinical Pathology, Cova da Beira Hospital, Castelo Branco, Portugal, ³ Department of Immunology & Infection, London School of Hygiene and Tropical Medicine (LSHTM), London, UK, ⁴ Liverpool School of Tropical Medicine (LSTM), Liverpool, UK.

Background: *Plasmodium falciparum* parasites have the ability of developing mechanisms to resist antimalarial drugs by suffering mutations in specific genes. Populations of *P. falciparum* that were previously dominated by chloroquine-resistant genotypes are now under the artemisinin-based combination drug pressure. *P. malariae*, *P. ovale curtisi* and *P. ovale wallikeri* are sympatric with *P. falciparum* and frequently presented as co-infections across the continent, but are often unreported.

Material and methods: The prevalence of human *Plasmodium* species was determined by nested PCR using DNA from blood spots collected during a cross sectional survey conducted within CISA (Health Research Center in Angola, translated) project’s Demographic Surveillance System (DSS) in northern Angola. *P. falciparum* was genotyped at resistance-associated loci in *pfcr* and *pfmdr1* by real-time PCR, or by direct sequencing of amplicons.

Results: From the 3316 collected samples, 541 (16.31%) contained *Plasmodium* sp. infections; from which 477 (88.17%) were *P. falciparum* alone, 6.47% were *P. falciparum* and *P. malariae* together, 3.69% harboured *P. ovale curtisi* or *P. ovale wallikeri* alone or in combination with other species and 1.11% comprised *P. vivax* alone (see table 1). Of 430 *P. falciparum* isolates genotyped for *pfcr*, 61.63% carried the wild-type allele CVMNK at codons 72 – 76, either alone or in combination with the resistant allele CVIET. No other *pfcr* allele was found. Wild-type alleles also dominated at codons 86, 184, 1034, 1042 and 1246 of the *pfmdr1* locus among the sequenced isolates (see figure 1).

Discussion/Conclusion: The use of molecular methods for species discrimination has provided an estimate of the prevalence of the different *Plasmodium* sp. Although *P. falciparum* is the predominant species, *P. vivax, P. malariae* and both *P. ovale* types also exist, frequently in mixed infections. Contrasting to previous studies conducted in Angola, *P. falciparum* comprised an approximately equal mix of chloroquine-sensitive and chloroquine-resistant parasites, suggesting changes in the parasite population, possibly due to either lower drug pressure due to poor access to treatment in rural areas, or a rapid impact of the national drug policy change.

Acknowledgements: The authors wish to thank the researchers and technicians whose support was fundamental in this study, namely David Simão, Ismael Teles, Debbie Nolder, Khadij Beshir, Gisela Henriques, Sumi Britton, Elizabeth Benito Garcia and João Pires. We would also like to acknowledge Luis Bernardino for the molecular biology laboratory facilities, CDC and LSHTM Malaria Center for positive controls, the local administration and all the members of the community who accept to be part of this study. This work was funded by the promoters of the CISA Project (Portuguese Institute for Development Assistance, Calouste Gulbenkian Foundation, Bengo Provincial Government and the Ministry of Health of Angola), the EC FP7 MALTRES project, and the UK Health Protection Agency.